

Modeling Effects of Greenland Ice sheet Melting on AMOC Variability and Predictability

Andreas Schmittner, Pepijn Bakker¹, and many more

¹now at MARUM, University of Bremen, Germany

Funded by NOAA's CVP program

Motivation

- Scientific and public (mis-)conceptions of Greenland Ice Sheet (GrIS) melt effects on AMOC
- Previous assessments (e.g. IPCC) use model projections without GrIS melting
- Goals: Include GrIS melting in the most realistic way possible and produce multi-centennial, probabilistic AMOC projections

Atmos. Chem. Phys., 16, 3761-3812, 2016 www.atmos-chem-phys.net/16/3761/2016/ doi:10.5194/acp 16 3761 2016 © Author(s) 2016, CC Attribution 3.0 License.

Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous

James Hansen¹, Makiko Sato¹, Paul Hearty², Reto Ruedy^{3,4}, Maxwell Kelley^{3,4}, Valerie Masson-Delmotte⁵, Gary Russell⁴, George Tselioudis⁴, Junji Cao⁶, Eric Rignot^{7,8}, Isabella Velicogna^{7,8}, Blair Tormey⁹, Bailey Donovan¹⁰, Evgeniya Kandiano¹¹, Karina von Schuckmann¹², Pushker Kharecha^{1,4}, Allegra N. Legrande⁴, Michael Bauer^{4,13}, and Kwok-Wai Lo^{3,4}

1 of 10 articles read

they Make Reading

Blasses for Older

Bonobos?

After Dinosaur Extinction, Some Insects Recovered More Quickly

The New Hork Times

A Slow Ride Toward the Future of Public Transportation

When Bats Look for Meals Near Wind Power, Bats Die

SCIENCE

Scientists Warn of Perilous Climate Shift Within Decades, Not Centuries

SUBSCRIBE NOW

AMOCMIP

- Model Inter-comparison Project assessing effect of warming and GrIS melting on AMOC
- Use realistic GrIS melt rates and distributions
- 8 international modeling groups

GrIS meltwater fluxes calculated in 8 drainage basins ...

Lenaerts et al. (2015)

... based on mid-tropospheric air temperature relationships from high-res, regional climate model (RACMO2)

CMIP5 Multi-Model-Mean T_{500hPa}

Lenaerts et al. (2015)

GrIS freshwater forcing (surface melt only)

- from CMIP5 ensemble (uncertainty used in probabilistic projections shown later)
- calving changes not included
- RCP4.5: 0-0.015 Sv
- RCP8.5: 0-0.1 Sv
- much less than assumed by Hansen et al. (2016; 1-4 Sv)
- added to two 'baselines':
 - GCM (gGrISmelt)
 - RCM + obs calving (rGrISmelt)

AMOCMIP Results

- RCP4.5: AMOC slowdown until 2100, then stabilization / recovery
- RCP8.5: continued and large slowdown until 2300
- GrIS effects AMOC
- Additional reduction in RCP4.5
- Not much effect in RCP8.5

Box model emulator used for probabilistic projections

based on previous work by Stommel, Rahmstorf, Zickfeld

Uncertainties Included

- Greenhouse gas concentration changes
- Climate sensitivity including regional temperature changes (e.g. polar amplification, spatial correlations considered)
- GrIS mass loss
- AMOC sensitivity to climate and GrIS

Emulator fit to GCMs

- red: GCM
- thin lines: Emulator
- Emulator fits most GCMs & scenarios well
- error = 1-2 Sv (considered in uncertainty estimate)

Regional temperature forcing from CMIP5

Probabilistic Projections Results

- RCP4.5: AMOC slowdown until 2100, then stabilization; zero collapse probability
- RCP8.5: continued and large slowdown until 2300; significant collapse probabilities after 2100
- GrIS effects AMOC
- Small additional reduction in RCP4.5
- Larger effects in RCP8.5 include increased collapse probabilities

Probabilistic Projections Results

Conclusions

- AMOC response depends strongly on forcing
 - RCP4.5 reduction, stabilization
 - RCP8.5 no stabilization, significant collapse probability
- GrIS effects significant but not dominant

Bakker et al. (in review) Fate of Atlantic Meridional Overturning Circulation
— Strong decline under continued warming and Greenland melting,
Geophysical Research Letters

Future Work

- Consider freshwater fluxes from Antarctica
- Explore different emulators
- Extend projections beyond 2300
- Assess impacts (e.g. on ecosystems, biogeochemistry, carbon cycle)

Thanks

Encore: calving effects

Upcoming Nature paper:

doi:10.1038/nature2058;

Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge

Pepijn Bakker¹†, Peter U. Clark¹, Nicholas R. Golledge^{2,3}, Andreas Schmittner¹ & Michael E. Weber^{4,5}

Effects of Calving

Model name	Historical	RCP4.5	RCP4.5-gGrISmelt	RCP4.5-rGrISmelt	RCP8.5	RCP8.5-gGrISmelt	RCP8.5-rGrISmelt	Freshwater forcing method	Ocean Resolution (latitude x longitude x vertical levels)	Atmospheric Resolution (latitude x longitude x vertical levels)	Reference
ACCESS1.0	2006	2300		2300	2100	2300	2300	Freshwater	1x1x50levs	1.875x1.25x38le vs	Dix et al., 2013
CanESM2	2006	2300	2300	2300	2100	2195	2160	Negative salt flux	1.41× 0.94x40levs	T63x35levs	Yang and Saenko, 2012
CCSM4	2006	2300	2250	2250	2300	2300	2300	Negative salt flux	1.11x0.27-0.54x60	0.9×1.25x26levs	Meehl et al., 2012
CESM1.1.2	2006				2200	2200		Negative salt flux	1.11x0.27-0.54x60	0.9×1.25x30levs	Meehl et al., 2013
GFDL-ESM2Mb	2006	2100	2100		2100	2100		Freshwater	1x(1-1/3)x50levs	2x2.5x24levs	Dunne et al., 2012
IPSL-CM5A-LR	2006	2300	2300					Freshwater	2x2x31levs	1.9x3.75x39levs	Dufresne et al., 2013
MIROC4m	2006	2300	2300	2300	2300	2300	2300	Freshwater	0.5-1.4x1.4x44levs	T42x20levs	Hasumi and Emori, 2004
OSUVic	2006	2300	2300	2300	2300	2300		Negative salt flux	1.8x3.6x19lev	T42x10levs	Schmittner et al., 2011